Convert Duodecimal System to Duotrigesimal System (Base 16 to Base 32)
Definition
The duodecimal numbering system consists of 12 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A and B). The duotrigesimal numbering system is composed of 32 digits (Duodecimal System + C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V).
Enter the base 12 value you want to convert to base 32:
Conversion Tables
Positional Notation |
Binary System |
|
Ternary System |
|
Quaternary System |
|
Quinary System |
|
Senary System |
|
Septenary System |
|
Octal System |
|
Conversion Tables
Positional Notation |
Nonary System |
|
Decimal System |
|
Duodecimal System |
|
Hexadecimal System |
|
Vigesimal System |
|
Duotrigesimal System |
|
Duodecimal to Duotrigresimal
Duodecimal System |
Duotrigresimal System |
0 |
0 |
1 |
1 |
2 |
2 |
3 |
3 |
4 |
4 |
5 |
5 |
6 |
6 |
7 |
7 |
8 |
8 |
9 |
9 |
A |
A |
B |
B |
10 |
C |
11 |
D |
12 |
E |
13 |
F |
Duodecimal to Duotrigresimal
Duodecimal System |
Duotrigresimal System |
14 |
G |
15 |
H |
16 |
I |
17 |
J |
18 |
K |
19 |
L |
1A |
M |
1B |
N |
20 |
O |
21 |
P |
22 |
Q |
23 |
R |
24 |
S |
25 |
T |
26 |
U |
27 |
V |
Conversion to Other Numbering Systems
Conversão para Outros Sistemas de Numeração