The binary numbering system is represented by using only two numbers (0 and 1). The vigesimal number system consists of 20 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J ).

Enter the binary value you want to convert to base 20:

=

Binary System | Vigesimal System |
---|---|

0 | 0 |

1 | 1 |

10 | 2 |

11 | 3 |

100 | 4 |

101 | 5 |

110 | 6 |

111 | 7 |

1000 | 8 |

1001 | 9 |

1010 | A |

1011 | B |

1100 | C |

1101 | D |

1110 | E |

1111 | F |

10000 | G |

10001 | H |

10010 | I |

10011 | J |

Positional Notation | |
---|---|

Binary System | _{} |

Ternary System | _{} |

Quaternary System | _{} |

Quinary System | _{} |

Senary System | _{} |

Septenary System | _{} |

Octal System | _{} |

Nonary System | _{} |

Decimal System | _{} |

Duodecimal System | _{} |

Hexadecimal System | _{} |

Vigesimal System | _{} |

Duotrigesimal System | _{} |