The duotrigesimal numbering system consists of 32 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V). The binary numbering system is represented by using only two numbers (0 and 1).
Enter the value in binary base you want to convert to duotrigesimal base:
Binary System | Vigesimal System |
---|---|
0 | 0 |
1 | 1 |
10 | 2 |
11 | 3 |
100 | 4 |
101 | 5 |
110 | 6 |
111 | 7 |
1000 | 8 |
1001 | 9 |
1010 | A |
1011 | B |
1100 | C |
1101 | D |
1110 | E |
1111 | F |
10000 | G |
10001 | H |
10010 | I |
10011 | J |
10100 | K |
10101 | L |
10110 | M |
10111 | N |
11000 | O |
11001 | P |
11010 | Q |
11011 | R |
11100 | S |
11101 | T |
11110 | U |
11111 | V |
Positional Notation | |
---|---|
Binary System | |
Ternary System | |
Quaternary System | |
Quinary System | |
Senary System | |
Septenary System | |
Octal System | |
Nonary System | |
Decimal System | |
Duodecimal System | |
Hexadecimal System | |
Vigesimal System | |
Duotrigesimal System |